14 research outputs found

    The nature and origin of Seyfert warm absorbers

    Get PDF
    We collate the results of recent high resolution X-ray spectroscopic observations of 23 AGN, and use the resulting information to try to provide answers to some of the main open questions about warm absorbers: where do they originate, what effect do they have on their host galaxies, and what is their importance within the energetics and dynamics of the AGN system as a whole? We find that the warm absorbers of nearby Seyferts and certain QSOs are most likely to originate in outflows from the dusty torus, and that the kinetic luminosity of these outflows accounts for well under 1% of the bolometric luminosities of the AGN. Our analysis supports, however, the view that the relativistic outflows recently observed in two PG quasars have their origin in accretion disc winds, although the energetic importance of these outflows is similar to that of the Seyfert warm absorbers. We find that the observed soft X-ray absorbing ionisation phases fill less than 10% of the available volume. Finally, we show that the amount of matter processed through an AGN outflow system, over the lifetime of the AGN, is probably large enough to have a significant influence on the evolution of the host galaxy and of the AGN itself

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    The black hole accretion code

    Get PDF

    Working Memory and Mathematical Learning.

    No full text
    An increasing number of students show severe mathematical difficulties. Between 5% and 10% of children and adolescents experience a substantial learning deficit in at least one area of mathematics (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 2005). The identification of these mathematical difficulties is fundamental if we consider the negative widespread drawbacks determined by math difficulties. Basic mathematical skills are regularly used in everyday life, and their deficiency affects both employment opportunities and socio-emotional well-being. In addition, results of recent studies show how mathematical abilities predict financial and educational success, particularly for women (Geary, Hoard, Nugent, & Bailey, 2013). Domain-general cognitive abilities such as memory, attention, or processing speed are important precursors of school learning. Of all these general cognitive skills, several studies demonstrated that working memory is a key predictor of mathematical competence. The term \u201cworking memory\u201d (WM) refers to a temporary memory system that plays an important role in supporting learning during the childhood years because its key feature is the capacity to both store and manipulate information. Various models of the structure and function of working memory exist, but in the present chapter we will refer to the relkation to the multicomponent model of working memory proposed by Baddeley and Hitch in 1974 and revised in succeeding years (Baddeley, 2000) and math abilities

    Branching out: mechanisms of dendritic arborization

    No full text
    corecore